Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935059

RESUMO

Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.


Assuntos
Aracnídeos , Aranhas , Animais , Aranhas/genética , Duplicação Gênica , Genes Homeobox , Aracnídeos/genética , Genoma , Evolução Molecular , Filogenia
2.
Gigascience ; 112022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166339

RESUMO

BACKGROUND: Schistosomiasis, or bilharzia, is a parasitic disease caused by trematode flatworms of the genus Schistosoma. Infection by Schistosoma mansoni in humans results when cercariae emerge into water from freshwater snails in the genus Biomphalaria and seek out and penetrate human skin. The snail Biomphalaria straminea is native to South America and is now also present in Central America and China, and represents a potential vector host for spreading schistosomiasis. To date, genomic information for the genus is restricted to the neotropical species Biomphalaria glabrata. This limits understanding of the biology and management of other schistosomiasis vectors, such as B. straminea. FINDINGS: Using a combination of Illumina short-read, 10X Genomics linked-read, and Hi-C sequencing data, our 1.005 Gb B. straminea genome assembly is of high contiguity, with a scaffold N50 of 25.3 Mb. Transcriptomes from adults were also obtained. Developmental homeobox genes, hormonal genes, and stress-response genes were identified, and repeat content was annotated (40.68% of genomic content). Comparisons with other mollusc genomes (including Gastropoda, Bivalvia, and Cephalopoda) revealed syntenic conservation, patterns of homeobox gene linkage indicative of evolutionary changes to gene clusters, expansion of heat shock protein genes, and the presence of sesquiterpenoid and cholesterol metabolic pathway genes in Gastropoda. In addition, hormone treatment together with RT-qPCR assay reveal a sesquiterpenoid hormone responsive system in B. straminea, illustrating that this renowned insect hormonal system is also present in the lophotrochozoan lineage. CONCLUSION: This study provides the first genome assembly for the snail B. straminea and offers an unprecedented opportunity to address a variety of phenomena related to snail vectors of schistosomiasis, as well as evolutionary and genomics questions related to molluscs more widely.


Assuntos
Biomphalaria , Esquistossomose mansoni , Esquistossomose , Animais , Biomphalaria/genética , Biomphalaria/parasitologia , Vetores de Doenças , Humanos , Schistosoma mansoni/genética , Esquistossomose mansoni/parasitologia
3.
BMC Genomics ; 23(1): 93, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105312

RESUMO

BACKGROUND: The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS: Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION: Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.


Assuntos
Anfioxos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Insulina , Anfioxos/genética , Músculos , Mioblastos , Transcriptoma , Vertebrados/genética
4.
Mol Biol Evol ; 37(10): 2966-2982, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32520990

RESUMO

The evolutionary transition from invertebrates to vertebrates involved extensive gene duplication, but understanding precisely how such duplications contributed to this transition requires more detailed knowledge of specific cases of genes and gene families. Myogenic differentiation (MyoD) has long been recognized as a master developmental control gene and member of the MyoD family of bHLH transcription factors (myogenic regulatory factors [MRFs]) that drive myogenesis across the bilaterians. Phylogenetic reconstructions within this gene family are complicated by multiple instances of gene duplication and loss in several lineages. Following two rounds of whole-genome duplication (2R WGD) at the origin of the vertebrates, the ancestral function of MRFs is thought to have become partitioned among the daughter genes, so that MyoD and Myf5 act early in myogenic determination, whereas Myog and Myf6 are expressed later, in differentiating myoblasts. Comparing chordate MRFs, we find an independent expansion of MRFs in the invertebrate chordate amphioxus, with evidence for a parallel instance of subfunctionalization relative to that of vertebrates. Conserved synteny between chordate MRF loci supports the 2R WGD events as a major force in shaping the evolution of vertebrate MRFs. We also resolve vertebrate MRF complements and organization, finding a new type of vertebrate MRF gene in the process, which allowed us to infer an ancestral two-gene state in the vertebrates corresponding to the early- and late-acting types of MRFs. This necessitates a revision of previous conclusions about the simple one-to-four origin of vertebrate MRFs.


Assuntos
Evolução Molecular , Anfioxos/genética , Fatores de Regulação Miogênica/genética , Animais , Duplicação Gênica , Anfioxos/crescimento & desenvolvimento , Família Multigênica , Desenvolvimento Muscular , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...